Foreword

This CENELEC Guide has been prepared by CENELEC Technical Committee TC 210, EMC.

This third edition was approved by the CENELEC Technical Board on 2009-07-01; it supersedes CENELEC Guide 24:2005.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.
CONTENTS

1 Purpose .. 6

2 Characteristics of EMC standards .. 6
 2.1 Basic EMC standards ... 6
 2.2 Generic EMC standards .. 7
 2.3 Product EMC standards ... 8
 2.3.1 Product-family EMC standards (*) ... 8
 2.3.2 Dedicated product EMC standards ... 9

3 Formulation of product (family) EMC standards ... 10
 3.1 Electromagnetic phenomena for immunity .. 10
 3.1.1 Conducted low frequency phenomena ... 10
 3.1.2 Radiated low frequency field phenomena ... 11
 3.1.3 Conducted high frequency phenomena ... 11
 3.1.4 Radiated high frequency field phenomena ... 11
 3.1.5 Electrostatic discharge phenomena (ESD) ... 11
 3.2 Electromagnetic phenomena for emission ... 11
 3.3 Drafting of a Product EMC standard ... 12
 3.3.1 General ... 12
 3.3.2 Special points to be considered .. 13
 3.3.3 Reference to other standards ... 13
 3.4 Coordinating role of CENELEC TC 210 for product EMC standards 14

Annex A List of generic and basic EMC standards ... 15
Annex B Definitions .. 17
Annex C Guideline table for comparing generic and product standards 19
Annex D Annexes ZZ ... 23
INTRODUCTION

The European Commission has given CEN, CENELEC and ETSI the task of preparing and harmonising the necessary standards for the implementation of this directive.

These standards are necessary to enable the presumption of conformity with the protection requirements of the EMC Directive set out in Annex I, Article 1 and are designed to satisfy those protection requirements. Conformance to the appropriate standards will facilitate the free movement of apparatus placed on the market within the European Economic Area (EEA).

Generic EMC standards (or product standards i.e. product-family, or dedicated product standards where appropriate) define the emission and immunity test requirements presumed to satisfy the protection requirements of the EMC Directive.

It is recommended that this CENELEC Guide be read in conjunction with IEC Guide 107:2009 "Electromagnetic compatibility - Guide to the drafting of electromagnetic compatibility publications".
1 Purpose

The purpose of this Guide is to

– advise on the application of the generic and basic EMC standards,

– advise on the preparation of product i.e. product-family or dedicated product EMC standards.

It should be noted that certification (*) aspects are not considered in this Guide.

This Guide is primarily intended for product-oriented committees preparing EMC standards, especially in the field of immunity.

(*) NOTE Certification (of conformity) is the action by a third party demonstrating that adequate confidence is provided that a duly identified product, process or service is in conformity with a standard or with other normative documents.

2 Characteristics of EMC standards

To fulfil the tasks related to meeting the requirements of the EMC Directive, it is essential to be able to distinguish between the three following types of EMC standards:

a) basic standards,

b) generic standards,

c) product standards (including product-family standards and dedicated product standards).

The following subclauses define (as precisely as practicable) the characteristics of these different types of standards. A list of basic and generic standards is given in Annex A.

In addition to the above types of standards, there is a need for a further category of documents including guidance documents, codes of practice, etc.

Table 1 gives an overview of the characteristics of the different types of standards.

2.1 Basic EMC standards

Two types of basic EMC standards have been identified:

– those for tests and measurements;

– those related to other aspects.

Basic standards for test and measurement are of particular importance in connection with generic and product standards for conformity assessment purposes.
a) Basic standards for emission and immunity tests and measurements

Contents

These standards give (often separately for each disturbing phenomenon) a definition and description of the phenomenon, detailed test and measurement methods, test instrumentation and basic test set up.

Ranges of test levels (immunity) may be given with respect to the characteristics of measuring equipment or measuring methods.

These standards shall not include prescribed limits and shall not contain detailed performance criteria.

Aims and use

These standards constitute the foundation of EMC-standardisation by defining the detailed test and measurement methods.

It is intended that generic and product (- family) standards should make reference to the basic standards without repeating their detailed contents. As such, a declaration of conformity of products with the basic standards has no significance and therefore basic standards are not included in the list of harmonised standards published in the Official Journal of the European Union (OJEU). This OJEU list will indeed include only those standards permitting the direct presumption of conformity of products with Directive 2004/108/EC.

b) Other types of basic standards and documents

Other types of EMC standards and publications relating to other aspects may be identified as ‘basic’, in as much as they describe the fundamental elements of EMC. For example, they may concern:

– guidelines on mitigation measures, e.g. IEC 61000-5-1 (Technical Report Type 3).

– description and classification of environment, possibly including ranges of environmental and/or compatibility levels, thus constituting an important basis for establishing emission limits and immunity test levels, e.g. IEC 61000-2-5 (still described by IEC as a “Technical Report Type 2”, although this type of publication no longer exists).

2.2 Generic EMC standards

Contents

These standards for emission and immunity define a set of precise EMC requirements (including limits) and indicate which standardised tests are applicable to those products intended to be used in a given environment.
It is intended that generic standards should not include detailed test and measurement methods or test instrumentation but refer for that purpose to basic standards. Generic standards may contain, when necessary, additional information (e.g. choice of one method where several are included in a basic standard).

Generic immunity standards specify a limited number of essential tests, with the objective of achieving a technical/economical optimum, thus avoiding over specifying test requirements. This selection is very critical.

These limited test requirements for conformity with the EMC Directive do not preclude that equipment must be designed to operate normally in its intended EMC environment for all disturbing phenomena specified within this environment.

Generic immunity standards also include those performance criteria of general application which are associated with specific test levels.

Aims and use

The generic standards should be used when no corresponding product standards exist or are deemed necessary.

In addition, generic standards play an essential role in the co-ordination of product standards.

2.3 Product EMC standards

2.3.1 Product-family EMC standards (*)

Contents

The scopes of such standards indicate the particular product-family concerned; these may be broad or narrow.

Product-family standards define specific EMC requirements (immunity and emission) and precise tests for the products within their scopes.

(*) NOTE A product-family covers products with differing detailed functions, but having some common general characteristics. The borderline with dedicated products may sometimes be imprecise as families may be very broad or narrow.

It is intended that

- product-family standards should not normally include detailed measurement methods or test instrumentation, but give reference to basic standards. In exceptional and justified cases, specific test methods or deviations from the tests in the basic standards may be necessary;

- product-family standards include all necessary additional information for the reproducible testing of those products;
the tests and limits in product-family standards should be co-ordinated with those in the
 generic standards. Where deviations are necessary, they shall be fully justified (**) and
 the rationale shall be indicated, preferably within the product-family standards. Deviations may concern the phenomena considered, additional tests or test levels.

(**) NOTE CENELEC TC 210 in their overall EMC co-ordination role should be given the opportunity to
 comment on the proposed justification prior to the finalisation of the standard.

– product-family standards include more specific and detailed performance criteria than
generic standards.

Aims and use

For assessment of compliance with the EMC Directive, product-family standards take
precedence over generic standards, either partially or totally according to the EMC domains
covered.

It is recommended that an EMC product-family standard forms a separate publication, except
when EMC requirements are of such a simple nature that they may be introduced in a
product-family standard covering the performance characteristics. In this case the EMC
clauses shall be clearly separated and identified.

In safety standards EMC clauses not directly related to safety should preferably not be
included.

2.3.2 Dedicated product EMC standards

The same criteria as defined for product-family standards apply. However EMC
requirements, instead of constituting separate standards, are frequently included within the
general-purpose (performance characteristics) standards dedicated to those specific
(dedicated) products. EMC clauses within these general-purpose standards shall be
separated and shall be clearly identified. However, having separate EMC standards is to be
preferred.

Regarding emission requirements: when a particular product is covered by a product-family
standard, the preparation of a dedicated product standard is seldom justified. Deviations from
the specified emission limits will be allowed only in exceptional cases, such as where a
particular environment allows an increase. CENELEC TC 210 in its co-ordination role will
consider any proposed deviations.

Product specific functional characteristics have to be taken into consideration when
determining the product's immunity requirements. Dedicated product EMC standards or
clauses shall give precise performance criteria.

These product standards are therefore in some cases justifiably different from product-family
and generic standards; however they should remain coordinated with them.
Table 1 – Structure of standards

<table>
<thead>
<tr>
<th>Type</th>
<th>Contents</th>
<th>Aims</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic a</td>
<td>- Measurement and test methods
- Instrumentation
- Test set-up
- Ranges of test levels (immunity)
- No limits/No performance criteria</td>
<td>- Reference documents
- No conformance testing of products (Not published in the OJEU list)</td>
</tr>
<tr>
<td>Generic</td>
<td>- Precise and essential requirements (limits) for all products intended for use in each environment i.e. residential, commercial, light industry and industry
- Refer to basic standards for measurement/test methods (no repetition)
- General performance criteria</td>
<td>- Conformance testing of products (Published in the OJEU list)
- Co-ordination tool for product (family) standards</td>
</tr>
<tr>
<td>Product-familiy</td>
<td>- EMC requirements for product-families
- More detailed performance criteria
- Specific test set-up etc.
- Refer to basic standards for measurements/tests (no repetition)</td>
<td>- Conformance testing of products (Published in the OJEU list)
- Precedence over generic standards but to be co-ordinated with them</td>
</tr>
<tr>
<td>Dedicated product</td>
<td>- Same as for product-family but more specific.</td>
<td>- Same as for product-family but more specific.
- Generally not needed for emission</td>
</tr>
</tbody>
</table>

a Refers to basic standards for tests and measurements. There are other types of basic EMC standards (see 2.1.b).

3 Formulation of product (family) EMC standards

3.1 Electromagnetic phenomena for immunity

3.1.1 Conducted low frequency phenomena

- slow variations of the supply voltage;
- harmonics, inter-harmonics;
- signalling on the mains supply;
- voltage fluctuations;
- voltage dips and interruptions;
- voltage unbalance;
- power frequency variations;
– induced low frequency voltages;
– DC current or voltage in AC networks.

3.1.2 Radiated low frequency field phenomena
– magnetic fields (*);
– electric fields (*).

(*) NOTE Continuous or transient.

3.1.3 Conducted high frequency phenomena
– induced continuous wave voltages or currents;
– unidirectional transients (**);
– oscillatory transients (**).

(**) NOTE Single or repetitive.

3.1.4 Radiated high frequency field phenomena
– magnetic fields;
– electric fields;
– electromagnetic fields:
 – continuous waves,
 – transients (**).

(**) NOTE Single or repetitive.

3.1.5 Electrostatic discharge phenomena (ESD)

3.2 Electromagnetic phenomena for emission

In principle, the same phenomena exist as listed in 3.1, but until now, emission limits in product families have been applied only to the following phenomena or effects:
– power supply harmonic currents;
– power supply currents resulting in voltage fluctuations;
– radio-interference (power supply, radiation, signalling wires, etc.);
– audio-frequency magnetic fields in special cases.

NOTE Radio-interference emission limits may provide an indirect limitation of transients.
In future other phenomena may be considered under emission limits, none are presently foreseen.

3.3 Drafting of a Product EMC standard

3.3.1 General

A product EMC Standard should, to the maximum possible extent, align with the applicable generic EMC Standards; if not, all deviations from the generic EMC standards shall be fully justified and the rationale shall be given, e.g. in a separate document or, preferably, in the introduction of the standard or in an informative annex to it.

NOTE 1 Dedicated product standards have the same criteria as defined for product-family standards. See 2.3.2.

A product EMC standard should preferably make reference to basic EMC standards, and should define test arrangements and limits for emission tests, and test levels and specific performance criteria for immunity tests.

Alternative test and measurement methods for the same purpose are acceptable provided they give an adequate provision of presumption of conformity with the protection requirements.

NOTE 2 In addition it will probably be necessary to indicate how to apply the standard to the product (specific test set-up and procedure if needed).

New tests, which are not defined in the basic EMC standards, should be avoided as far as possible.

Product EMC standards can, for example, be created for the following reasons:

a) specific functional requirements, in particular for performance;

b) specific environments;

c) phenomena not considered in the generic standards.

Standards may include requirements (including well-specified warning clauses) for user manuals or instructions (to be provided by the manufacturer) and/or requirements for the marking of products, when necessary.

The treatment of uncertainties is considered as being a technical matter related to the standard and not a regulatory issue. Such statements may therefore be included.

The following types of statements should be avoided:

1) Statements referring to the role of national authorities in general, for example indicating that national authorities may relax the standards requirements, ignore them or make them more severe.

2) Statements concerning the legal responsibilities or legal roles of parties involved (manufacturers, operators, authorities, etc.).
3) Statements referring to sales restrictions, legal sanctions, obligations for entering the market, ban of sales, contractual arrangements/relations between parties.

4) Statements imposing obligations outside the scope of the standards, for example an obligation to perform tests in locations defined by non-technical parameters, such as manufacturers' premises or third party laboratories.

 NOTE Only technical requirements may be imposed on test locations.

5) Statements related to cases of dispute, such as “In case of dispute, the method used by the manufacturer shall be used”.

6) Statements including dates of application.

 NOTE If IEC Technical Committees find it useful to give advice in such matters, it should be done in separate documents and not included in the text of standards.

7) Statements introducing provisional limits or requirements.

3.3.2 Special points to be considered

A product EMC standard should preferably be structured in the same manner as a generic EMC standard.

In particular, the following points should be considered:

a) define the type of product(s) covered by the product EMC standard;

 NOTE It is important that the scope of products covered is very clearly defined.

b) describe and define the product operating conditions, environment and special phenomena to be considered;

c) for phenomena covered by a generic EMC standard, a new test procedure and appropriate test level(s) may be produced only in justified cases in order to achieve an adequate level of compatibility;

d) test methods should be described in detail only for those phenomena not covered by basic standards. Otherwise reference should be made to basic standards.

3.3.3 Reference to other standards

The principles outlined above presuppose a hierarchy of standards and an extensive use of reference to other EMC standards. For example, generic standards and product (-family) standards refer in principle to basic standards without reproducing the details. It is therefore necessary to define clearly the principles that may be used to make such references.

In order to comply with CENELEC procedures (CEN/CENELEC Internal Regulations Part 3, 6.2.2, and CENELEC Guide 10), it is acceptable to make reference in a standard to other standardisation documents in the two following ways:
a) Give reference only to officially approved documents e.g. IEC, CENELEC or ETSI standards, IEC, ITU-R or ITU-T recommendations. For basic standards, dated references shall be used. Where Annex ZA is present (in the case where CENELEC standards are based on international versions from IEC or CISPR) it is prevailing regarding the use of references. The specific edition of the referenced EN is the reference to be followed.

Care should be taken to update these references in the future when it is technically necessary.

b) If, however, normative or informative use needs to be made of an unapproved reference document (e.g. IEC CD or CDV), this reference document, or the essential part of it, should be reproduced without change in full extent in a normative annex to the standard, giving complete reference to the original document.

This will permit National Committees to vote with adequate knowledge and will allow easy updating and later suppression of the annex once the definitive reference document has been approved.

3.4 Coordinating role of CENELEC TC 210 for product EMC standards

The coherence of EMC standards is ensured in TC 210 by internal procedures comprising two main responsibilities:

– the responsibility for checking product standards during their preparation by Product Oriented Committees.

– the responsibility for giving recommendations to CENELEC MC in respect of the inclusion of harmonised standards in the Official Journal of the European Union.

This task of co-ordination of the product standards has been delegated by CENELEC TC 210 to its Working Group 1, Coordination, Strategic and Horizontal Matters, in order to assist the EMC Consultant designated by CENELEC BT.

The review of standards by TC 210/WG 1 covers only technical aspects of those standards. Reviewers will comment on points of principle (such as limits, novel test methods, etc.) but detailed comments should be dealt with by the reviewer’s National Committee.
Annex A

List of generic and basic EMC standards

A.1 Generic standards

CENELEC TC 210 is responsible for producing generic emission and immunity EMC standards for the following environments:

1 - Residential, commercial and light industrial
 EN 61000-6-3 Generic emission standard.
 EN 61000-6-1 Generic immunity standard.

2 - Industrial
 EN 61000-6-4 Generic emission standard.
 EN 61000-6-2 Generic immunity standard.

A.2 Basic emission standards for test and measurement

Currently, no complete basic emission standards (fully in accord with the definitions given in this document) are readily available, but measurement and test methods are described in the following stand-alone product-family standards. Reference can be made to the appropriate clauses of these for measurement and test methods:

- Emission of harmonics of power frequency on mains supplies up to and including 16 A per phase (EN 61000-3-2)
- Emission of voltage fluctuations (flicker) on mains supplies up to and including 16 A per phase (EN 61000-3-3)
- Emission of voltage fluctuations (flicker) on mains supplies up to and including 75 A and subject to conditional connection (EN 61000-3-11)
- Emission of harmonics of power frequency on mains supplies from greater than 16 A per phase up to 75 A per phase (EN 61000-3-12)
- Emission of signalling on low-voltage electrical installations (EN 50065-1, EN 50065-2-1, EN 50065-2-2, and EN 50065-2-3)
- Emission of conducted and radiated radio frequency disturbances (EN 55022, and EN 55014-1 for discontinuous disturbances)
- Emission of conducted and radiated radio-frequency disturbances (EN 55011)
NOTE 1 EN 55011, EN 55013, EN 55014, EN 55022 and EN 61000-3-2 and EN 61000-3-3 have at present a mixed character of basic and product-family standards (being stand alone documents). They are considered essentially as product-family standards, as their main purpose with regard to the EMC Directive is to ensure compliance for products.

NOTE 2 EN 55016 is a basic standard for radio-interference measurements.

NOTE 3 EN 61000-4-7 is a basic standard defining instrumentation for mains harmonics measurement, whereas EN 61000-4-15 defines instrumentation for flicker measurements (standard flickermeter).

A.3 Basic immunity standards for test and measurement

At present, relevant reference standards for the following environmental phenomena exist:

- **Electrostatic discharge (ESD)**
 IEC 61000-4-2 EN 61000-4-2
- **Radio-frequency electromagnetic field**
 IEC 61000-4-3 EN 61000-4-3
- **Electrical fast transients/burst -**
 IEC 61000-4-4 EN 61000-4-4
- **Surges**
 IEC 61000-4-5 EN 61000-4-5
- **Conducted high frequency disturbances**
 IEC 61000-4-6 EN 61000-4-6
- **Power-frequency magnetic fields**
 IEC 61000-4-8 EN 61000-4-8
- **Pulse magnetic fields**
 IEC 61000-4-9 EN 61000-4-9
- **Damped oscillatory magnetic fields**
 IEC 61000-4-10 EN 61000-4-10
- **Voltage variations, dips and interruptions**
 IEC 61000-4-11 EN 61000-4-11
- **Oscillatory waves**
 IEC 61000-4-12 EN 61000-4-12
- **Harmonics and interharmonics including mains signally at ac power port, low frequency immunity tests**
 IEC 61000-4-13 EN 61000-4-13
- **Voltage fluctuations**
 IEC 61000-4-14 EN 61000-4-14
- **Conducted low-frequency disturbances**
 IEC 61000-4-16 EN 61000-4-16
- **Ripple on dc input power port**
 IEC 61000-4-17 EN 61000-4-17
- **Unbalance**
 IEC 61000-4-27 EN 61000-4-27
- **Variation of power frequency**
 IEC 61000-4-28 EN 61000-4-28
- **Voltage variations and dips on dc power ports**
 IEC 61000-4-29 EN 61000-4-29

NOTE Short descriptions of all these and other tests and their references are gathered in the overview document IEC 61000-4-1/EN 61000-4-1 which gives useful information on the applicability of basic standards. Obviously, every basic standard is not intended to be called up for testing all products or for all conditions of use. Some basic standards have a very specific purpose.
Annex B

Definitions

For the purposes of this guide, the following definitions taken from IEC Guide 107, and also from IEC 60050(161) apply.

B.1 electromagnetic environment
the totality of electromagnetic phenomena existing at a given location
[IEV 161-01-01]

B.2 electromagnetic disturbance
any electromagnetic phenomenon which may degrade the performance of a device, equipment or system, or adversely affect living or inert matter
NOTE An electromagnetic disturbance may be electromagnetic noise, an unwanted signal or a change in the propagation medium itself.
[IEV 161-01-05]

B.3 electromagnetic interference
EMI
degradation of the performance of an equipment, transmission channel or system caused by an electromagnetic disturbance
NOTE 1 In English, the terms "electromagnetic disturbance" and "electromagnetic interference" designate respectively the cause and the effect, but they are often used indiscriminately.
NOTE 2 In French, the term "perturbation électromagnétique" is also used with the meaning of "brouillage électromagnétique".
[IEV 161-01-06]

B.4 electromagnetic compatibility
EMC
ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment
[IEV 161-01-07]

B.5 (electromagnetic) emission
phenomenon by which electromagnetic energy emanates from a source
[IEV 161-01-08]
B.6
immunity (to a disturbance)
ability of a device, equipment or system to perform without degradation in the presence of an electromagnetic disturbance

[IEV 161-01-20]

B.7
high frequency
frequency above 9 kHz

B.8
low frequency
frequency up to and including 9 kHz

B.9
port
particular interface of the equipment which couples this equipment with or is influenced by the external electromagnetic environment.

NOTE Examples of ports of interest are shown in Figure 1. The enclosure port is the physical boundary of the apparatus (e.g. enclosure). The enclosure port provides for radiated and electrostatic discharge (ESD) energy transfer, whereas the other ports provide for conducted energy transfer.

![Figure 1 – Examples of equipment ports](image-url)
Annex C

Guideline table for comparing generic and product standards

C.1 Emission

Evaluation table, emission requirements

This table shall be used for checking alignment between the limits stated in the generic standards and in any other standard considered for publication in the Official Journal with reference to the EMC Directive 2004/108/EC.

<table>
<thead>
<tr>
<th>Radiated, Enclosure</th>
<th>1. Equal to or more stringent limits Yes/No</th>
<th>2. Less stringent limits Value</th>
<th>3. Justification Yes/No</th>
<th>Column 1 or 2 & 3 combined acceptable Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-230 MHz,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 dBµV/m, 30 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230-1 000 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 dBµV/m, 30 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-230 MHz,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 dBµV/m, 10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230-1 000 MHz,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 dBµV/m, 10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues overleaf
<table>
<thead>
<tr>
<th>Conducted AC Mains port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equal to or more stringent limits Yes/No</td>
</tr>
<tr>
<td>2. Less stringent limits Value</td>
</tr>
<tr>
<td>3. Justification Yes/No</td>
</tr>
<tr>
<td>Column 1 or 2 & 3 combined acceptable Yes/No</td>
</tr>
</tbody>
</table>

Class A:
- 0,15 – 0,5 MHz
 - 79 dBµV QP
 - 66 dBµV AV
- 0,5 – 5 MHz
 - 73 dBµV QP
 - 60 dBµV AV
- 5 – 30 MHz
 - 73 dBµV QP
 - 60 dBµV AV

Class B:
- 0,15 – 0,5 MHz
 - 66-56 dBµV QP
 - 56-46 dBµV AV
- 0,5 – 5 MHz
 - 56 dBµV QP
 - 46 dBµV AV
- 5 – 30 MHz
 - 60 dBµV QP
 - 50 dBµV AV

0,15 MHz – 30 MHz
- EN 55014-1 discontinuous interference

EN 61000-3-2 or EN 61000-3-12 if applicable
EN 61000-3-3 or EN 61000-3-11 if applicable

The locations - where the product encompassed by the standard may be used - shall correlate with the classification of Class A and Class B equipment, as given in the appropriate CISPR standards according to the type of product.
C.2 Immunity

Evaluation table, immunity requirements

This table shall be used for checking alignment between the limits stated in the generic standards and in any other standard considered for publication in the Official Journal with reference to the EMC Directive 2004/108/EC.

<table>
<thead>
<tr>
<th></th>
<th>1. Equal to or more stringent limits</th>
<th>2. Less stringent limits</th>
<th>3. Justification</th>
<th>Column 1 or 2 & 3 combined acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power frequency magnetic field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio frequency electromagnetic field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal lines and data buses not involved in process control, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted high frequency disturbances, common mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast transients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surges line to ground line to line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process, measurement and control lines, and long bus and control lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted high frequency disturbances, common mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues overleaf.
<table>
<thead>
<tr>
<th></th>
<th>1. Equal to or more stringent limits Yes/No</th>
<th>2. Less stringent limits Value</th>
<th>4. Justification Yes/No</th>
<th>Column 1 or 2 & 3 combined acceptable Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast transients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surges line to ground line to line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC input and DC output ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted high frequency disturbances, common mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast transients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surges line to ground line to line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage dips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC input and AC output power ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted high frequency disturbances, common mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast transients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surges line to ground line to line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage dips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage interruptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low frequency harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted high frequency disturbances, common mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast transients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE Generic standards do not distinguish between those signal lines involved in process control and those, which are not. However some product standards may introduce such a distinction.
Annex D

Annexes ZZ

Harmonised standards must contain an Annex ZZ indicating the relevant aspects of new approach directives that are covered by the standard. EMC standards generally fall into three categories: emission only, immunity only, and both emission and immunity.

The following texts are provided as templates for inclusion by product committees. Deviations should only be made with the agreement of TC 210 and CENELEC MC since the text must be in conformity with Mandate M/404. This mandate requires that all references to 89/336/EEC shall be changed to references to 2004/108/EC, and Annexes ZZ be provided in standards where they do not currently exist, within five years of the publication of the mandate in March 2007. It is not necessary to update standards in the meantime to include this change until an amendment or new edition is being produced.

Product committees should review their standards as the deadline for the mandate approaches.

The text for particular circumstances follows.

For emission only

This example includes a reference also to the R&TTE Directive 1999/5/EC, which should be removed where not relevant.

Annex ZZ
(informative)

Coverage of Essential Requirements of EC Directives

This European Standard has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and within its scope the standard covers protection requirements of Annex I, Article 1(a) of the EC Directive 2004/108/EC, and essential requirements of Article 3.1(b) (emission only) of the EC Directive 1999/5/EC.

Compliance with this standard provides presumption of conformity with the specified essential requirements of the Directive[s] concerned.

NOTE Other requirements and other EC Directives may be applicable to the products falling within the scope of this standard.
For immunity only

This example includes a reference also to the R&TTE Directive 1999/5/EC, which should be removed where not relevant.

Annex ZZ
(informative)

Coverage of Essential Requirements of EC Directives

This European Standard has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and within its scope the standard covers protection requirements Annex I, Article 1(b) of the EC Directive 2004/108/EC, and essential requirements of Article 3.1(b) (immunity only) of the EC Directive 1999/5/EC.

Compliance with this standard provides presumption of conformity with the specified essential requirements of the Directive[s] concerned.

NOTE Other requirements and other EC Directives may be applicable to the products falling within the scope of this standard.

For both emission and immunity

This example includes a reference also to the R&TTE Directive 1999/5/EC, which should be removed where not relevant.

Annex ZZ
(informative)

Coverage of Essential Requirements of EC Directives

This European Standard has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and within its scope the standard covers protection requirements of Annex I, Article 1 of the EC Directive 2004/108/EC, and essential requirements of Article 3.1(b) of the EC Directive 1999/5/EC.

Compliance with this standard provides presumption of conformity with the specified essential requirements of the Directive[s] concerned.

NOTE Other requirements and other EC Directives may be applicable to the products falling within the scope of this standard.